

Friction Stir Additive Manufacturing as a potential route to achieve high performing structures

James Withers MER Corporation

Rajiv S. Mishra Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA

Acknowledgement – DOE STTR Contract No. DE-SC0013783; Dr. Alison Hahn, Program Manager

US DOE workshop on Advanced Methods for Manufacturing (AMM) September 29, 2015

Presentation outline

- Grand challenges confronting metal based additive manufacturing
- An overview of FSAM & where it fits best
- Seed results: Fabrication of high performance light-weight (Mg & Al based) alloys by FSAM
- Potential Application I: Integrated stringer assemblies on a skin panel fabricated by FSAM for aircraft fuselage
- Potential Application II: FSAM for fossil & nuclear energy applications
- Potential Application III: Functional & gradient materials by FSAM and listing of other potential applications for aerospace & energy industries
- Laser-FSAM hybrid & mini-sample testing capabilites

Chronological evolution of metal based additive

technologies and key challenges

Current limitations and challenges (Fourfold)	nt limitations and nges fold) Scale of production: 1) Build volume 2) Layer thickness Limits part size (few mm ³ and microns) Economic consideration: 1) High production cost 2) Low production rate Cost of product, delivery time Mechanical property: Solidification microstructures leading to property knockdown Part lifetime and efficiency					E ructures bockdown 2) ficiency	 Environment & Energy 1) Usage of shielding gas by fusion process 2) High power requirement 	
Key issues	 > Severe overhangs > Solidification microstructure > Mechanical properties 	 Post processing Time consuming Mechanical properties 	 ➢ Post processing ➢ High production cost ➢ Properties 	 Post processing Lowbuild rate 	 Foil preparation Low build volume Mechanical properties 	 ➢ Post processing ➢ High operating cost 	 Mechanica property Low build rate 	l ≻ Surface quality
Build volume (mm³) Build rate (mm³/s)	- 300x300x300 - 60	- 750x400x400 - 2000	- 250x250x250 - 4-16	- 1500x800x800 - 85	- Small - Slow	- 250x250x325 - 2-8	250x250x 280 - 0.5-5.5	200x200x 350 - 45-66
Layer thickness	120 µm	280-500 µm	20-100 µm	140 µm	Less	20 - 80 µm	20 – 80 µm	50 µm
Materials studied	Steels, Nickel based super alloy, Inconel, Titanium, Cobalt	Steel, Bronze	Steels, Inconel Titanium, Cobalt, Aluminum(Al)	Steels, Wasp alloy, Titanium(Ti)	Aluminum alloys	Steels, Titanium, Cobalt, Aluminum	Precious metals, Stee Titanium, Aluminum	Copper, Beryllium, Steels, Ti, Al, Ni
Advantages	 Can use composite powder mixture High cooling rate 	➤ Complex geometry is achie∨able	➢ Complex geometry is achie∨able	 Neutral gas Better property in comparison to castings 	 ≻ Solid state > Multi materia > structure > En∨ironment friendly 	➤ Multi material structure	 High quality finishing Reduction in stress 	Faster builds in comparison to DMLS and SLM
Temporal evolution of metal based additive technology Laminated object manufacturing (LOM)	Laser engineered net shaping (LENS) Laser additive manufacturing (LAM)	Digital part metallization (Prometal)	Selective laser melting (SLM)	Easy clad Direct meta deposition (DMD), Similar to LENS with higher build capacity	Ultrasonic consolidation (UAM)	Direct metal laser sintering (DMLS)	Laser cusing	Electron beam melting (EBM)
Sol Contraction of the second se	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	661		⁵⁰⁰	²⁰⁰ 7	²⁰⁰³	2005 CO	2000 0000

Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra, Mater. Design, 65 (2015), 934-952

Friction stir additive manufacturing (FSAM): Process description

- Non-consumable rotating tool with a custom designed pin and shoulder is inserted into the surfaces of sheets or plates to be joined and traversed along the joint line
- □ Joints are produced in solid state and involve no melting.
- Final thickness of the joint depends on the: (i) thickness of the sheets/plate, and (ii) number of assembly stages/layers
- In contrast to the cast approach in fusion based techniques, FSAM leads to wrought microstructures

Seed results: High performance Mg-Y-Nd alloy built by FSAM

Ref: S. Palanivel, N. Phalgun, B. Glass, R.S. Mishra, Mater. Design, 65 (2015), 934-952

> Hardness- 135 HV (Built+aged). These values are similar to AI 2XXX alloys!

Maximum hardness achieved by conventional techniques/heat treatment routes is 110-120 HV

Seed results: High performance Mg-Y-Nd alloy built by FSAM

- Higher strength and ductility
- Fine (2-7 nm) and uniform distribution of strengthening precipitates lead to high strength in FSAM + aged specimen
- Properties achieved are much higher than the starting material (T5)

S. Palanivel, H. Sidhar, R. S. Mishra, JOM 67 (3) (2015), 616-621.

GFSP Center for Friction Stir Processing

S. Palanivel, H. Sidhar, R. S. Mishra, JOM 67 (3) (2015), 616-621.

Drive behind FSAM for energy — physical metallurgy of ferritic-martensitic steels used in fossil & nuclear applications

Steel

Base

Fusion

Zone

1,2,3,4

Precipitate phases and their distribution in ferriticmartensitic steels

Drive behind FSAM for energy

0.35

Condition	As-received	FSW
YS (MPa)	493 ± 17	574 ± 17
UTS (MPa)	591 ± 4	736 ± 14
UE (%)	8.1 ± 1.2	11.2 ± 1.1
E (%)	28.5 ± 1.9	30.7 ± 1.3

Increase creep strength (?) and rupture life by adding MA956 stringers to P92 steels using FSAM

Schematic cross-sectional view of stiffened MA956 assembly over P92

Schematic of MA956 stiffener rings on P92 steel for enhanced creep resistance

- Addition of partial or full ring stiffeners for pressure vessels to increase their lifetime
- Selection & design of the stiffening material needs to be in such a way that creep and internal stresses are accommodated by the built stiffener

Potential application III: Functional & gradient materials by FSAM for other applications

Conceptual schematic showing few possible configurations

FSAM of composite materials

FSAM is a potential route to customize build performance by controlling microstructure

Laser assisted FSAM for reduction of forces and greater processing window

speed (w)

Pre-FSAM thermal treatment

Preheating by laser source leads to softening of the material ahead of the pin and reduction of tool forces

Expansion of processing window by decoupling heat (greater control on microstructure)

Tool traverse speed (v)

Mini testing capabilities to support FASM

SMALL TENSILE SPECIMEN DIMENSIONS

Mini-fatigue of 7075-T6

Cycles to failure.

Mini-Fatigue

- Can FSAM be an effective technique for production of high performance components?
 - It certainly appears promising for simpler geometries
 - Looking for collaborative opportunities to explore more material/design combinations

Thank you

Contact info: James Withers – jcwithers@mercorp.com Rajiv Mishra – Rajiv.Mishra@unt.edu